Identities Involving the Fourth-Order Linear Recurrence Sequence
نویسندگان
چکیده
منابع مشابه
Fourth Order Chebyshev Methods with Recurrence Relation
Abstract. In this paper, a new family of fourth order Chebyshev methods (also called stabilized methods) is constructed. These methods possess nearly optimal stability regions along the negative real axis and a three-term recurrence relation. The stability properties and the high order make them suitable for large stiff problems, often space discretization of parabolic PDEs. A new code ROCK4 is...
متن کاملHigher-Order Linear Ramified Recurrence
Higher-Order Linear Ramified Recurrence (HOLRR) is a PTIME sound and complete typed lambda caluclus. Its terms are those of a linear (affine) λ-calculus – every variable occurs at most once – extended with a limited recursive scheme on a word algebra. Completeness for PTIME holds by embedding Leivant’s ramified recurrence on words into HOLRR. Soundness is established at all types – and not only...
متن کاملSome Symmetric Identities involving a Sequence of Polynomials
In this paper we establish some symmetric identities on a sequence of polynomials in an elementary way, and some known identities involving Bernoulli and Euler numbers and polynomials are obtained as particular cases.
متن کاملPseudoprimes for Higher-order Linear Recurrence Sequences
With the advent of high-speed computing, there is a rekindled interest in the problem of determining when a given whole number N > 1 is prime or composite. While complex algorithms have been developed to settle this for 200-digit numbers in a matter of minutes with a supercomputer, there is a need for simpler, more practical algorithms for dealing with numbers of a more modest size. Such practi...
متن کاملLeft Annihilator of Identities Involving Generalized Derivations in Prime Rings
Let $R$ be a prime ring with its Utumi ring of quotients $U$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$ and $0neq a in R$. If $R$ admits a generalized derivation $F$ such that $a(F(u^2)pm F(u)^{2})=0$ for all $u in L$, then one of the following holds: begin{enumerate} item there exists $b in U$ such that $F(x)=bx$ for all $x in R$, with $ab=0$; item $F(x)=...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym11121476